Moving Average Dieses Beispiel lehrt, wie Sie den gleitenden Durchschnitt einer Zeitreihe in Excel berechnen. Eine bewegte Avearge wird verwendet, um Unregelmäßigkeiten (Spitzen und Täler) zu glätten, um Trends leicht zu erkennen. 1. Erstens, werfen wir einen Blick auf unsere Zeitreihe. 2. Klicken Sie auf der Registerkarte Daten auf Datenanalyse. Hinweis: Klicken Sie hier, um das Analyse-ToolPak-Add-In zu laden. 3. Wählen Sie Verschiebender Durchschnitt aus, und klicken Sie auf OK. 4. Klicken Sie im Feld Eingabebereich auf den Bereich B2: M2. 5. Klicken Sie in das Feld Intervall und geben Sie 6 ein. 6. Klicken Sie in das Feld Ausgabebereich und wählen Sie Zelle B3 aus. 8. Zeichnen Sie ein Diagramm dieser Werte. Erläuterung: Da wir das Intervall auf 6 setzen, ist der gleitende Durchschnitt der Durchschnitt der vorherigen 5 Datenpunkte und der aktuelle Datenpunkt. Als Ergebnis werden Spitzen und Täler geglättet. Die Grafik zeigt eine zunehmende Tendenz. Excel kann den gleitenden Durchschnitt für die ersten 5 Datenpunkte nicht berechnen, da nicht genügend frühere Datenpunkte vorhanden sind. 9. Wiederholen Sie die Schritte 2 bis 8 für Intervall 2 und Intervall 4. Fazit: Je größer das Intervall, desto mehr werden die Spitzen und Täler geglättet. Je kleiner das Intervall, desto näher sind die gleitenden Mittelwerte bis zu den tatsächlichen Datenpunkten. Hinzufügen eines Trends oder einer gleitenden Durchschnittszeile zu einem Diagramm Betrifft: Excel 2016 Word 2016 PowerPoint 2016 Word 2013 Outlook 2013 PowerPoint 2013 Mehr. Weniger Zeigt Datentrends oder gleitende Durchschnitte in einem von Ihnen erstellten Diagramm an. Können Sie eine Trendlinie hinzufügen. Sie können auch eine Trendlinie über Ihre tatsächlichen Daten hinaus erweitern, um zukünftige Werte vorherzusagen. So prognostiziert die folgende lineare Trendlinie zwei Quartale voraus und zeigt deutlich einen Aufwärtstrend, der für den zukünftigen Umsatz vielversprechend aussieht. Sie können eine Trendlinie zu einem 2-D Diagramm hinzufügen, das nicht gestapelt wird, einschließlich Bereich, Stab, Spalte, Linie, Vorrat, Streuung und Blase. Sie können keine Trendlinie zu einem gestapelten, 3-D-, Radar-, Kuchen-, Oberflächen - oder Donut-Diagramm hinzufügen. Hinzufügen einer Trendlinie Klicken Sie in Ihrem Diagramm auf die Datenreihe, zu der Sie eine Trendlinie oder einen gleitenden Durchschnitt hinzufügen möchten. Die Trendlinie beginnt am ersten Datenpunkt der gewählten Datenreihe. Aktivieren Sie das Kontrollkästchen Trendline. Um einen anderen Trendlinienbereich zu wählen, klicken Sie auf den Pfeil neben Trendline. Und klicken Sie dann auf Exponential. Lineare Vorhersage. Oder Zwei Periodenbewegungsdurchschnitt. Klicken Sie für weitere Trendlinien auf Weitere Optionen. Wenn Sie Mehr Optionen wählen. Klicken Sie unter Trendlinienoptionen im Fenster "Trendlinie formatieren" auf die gewünschte Option. Wenn Sie Polynom wählen. Geben Sie die höchste Leistung für die unabhängige Variable im Feld Auftrag ein. Wenn Sie Moving Average wählen. Geben Sie die Anzahl der Perioden ein, die verwendet werden, um den gleitenden Durchschnitt im Feld Zeitraum zu berechnen. Tipp: Eine Trendlinie ist am genauesten, wenn ihr R-Quadratwert (eine Zahl von 0 bis 1, die angibt, wie genau die Schätzwerte für die Trendlinie mit Ihren tatsächlichen Daten übereinstimmen) bei oder nahe bei 1. Wenn Sie eine Trendlinie zu Ihren Daten hinzufügen , Berechnet Excel automatisch seinen R-Quadrat-Wert. Sie können diesen Wert in Ihrem Diagramm anzeigen, indem Sie den Wert "R-Quadrat anzeigen" im Diagrammfenster (Bereich "Trendlinie", "Trendlinienoptionen") anzeigen. In den folgenden Abschnitten erfahren Sie mehr über alle Trendlinienoptionen. Lineare Trendlinie Verwenden Sie diese Art von Trendlinie, um eine optimale Gerade für einfache lineare Datensätze zu erstellen. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten wie eine Linie aussieht. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit steiler Geschwindigkeit steigt oder sinkt. Eine lineare Trendlinie verwendet diese Gleichung zur Berechnung der kleinsten Quadrate, die für eine Linie passen: wobei m die Steigung und b der Intercept ist. Die folgende lineare Trendlinie zeigt, dass die Verkäufe der Kühlschränke über einen Zeitraum von 8 Jahren kontinuierlich zugenommen haben. Beachten Sie, dass der R-squared-Wert (eine Zahl von 0 bis 1, die angibt, wie genau die Schätzwerte für die Trendlinie Ihren tatsächlichen Daten entsprechen) 0,9792 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Diese Trendlinie ist nützlich, wenn die Rate der Änderung in den Daten schnell ansteigt oder abnimmt und dann abnimmt. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Eine logarithmische Trendlinie verwendet diese Gleichung zur Berechnung der kleinsten quadratischen Anpassung durch Punkte: wobei c und b Konstanten sind und ln die natürliche Logarithmusfunktion ist. Die folgende logarithmische Trendlinie zeigt das vorhergesagte Bevölkerungswachstum von Tieren in einem festen Raum, in dem die Population ausgeglichen wurde, als der Platz für die Tiere abnahm. Beachten Sie, dass der R-Quadrat-Wert 0,933 ist, was eine relativ gute Passung der Zeile zu den Daten ist. Diese Trendlinie ist nützlich, wenn Ihre Daten schwanken. Zum Beispiel, wenn Sie Gewinne und Verluste über einen großen Datensatz analysieren. Die Reihenfolge des Polynoms kann durch die Anzahl der Fluktuationen in den Daten oder durch die Anzahl der Biegungen (Hügel und Täler) in der Kurve bestimmt werden. Typischerweise hat eine Order-2-Polynom-Trendlinie nur einen Hügel oder ein Tal, eine Order 3 hat ein oder zwei Hügel oder Täler und eine Order 4 hat bis zu drei Hügeln oder Tälern. Eine polynomische oder krummlinige Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei b und Konstanten sind. Die folgende Polynom-Trendlinie (ein Hügel) der Ordnung 2 zeigt die Beziehung zwischen Fahrgeschwindigkeit und Kraftstoffverbrauch. Beachten Sie, dass der R-Quadrat-Wert 0,979 ist, was nahe bei 1 liegt, so dass die Linien eine gute Anpassung an die Daten aufweisen. Diese Trendlinie, die eine gekrümmte Linie darstellt, ist für Datensätze nützlich, die Messungen vergleichen, die mit einer bestimmten Rate zunehmen. Zum Beispiel die Beschleunigung eines Rennwagens im 1-Sekunden-Intervall. Sie können keine Power-Trendline erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Eine Leistungs-Trendlinie verwendet diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind. Hinweis: Diese Option ist nicht verfügbar, wenn Ihre Daten negative oder Nullwerte enthalten. Die folgende Distanzmesskarte zeigt den Abstand in Metern pro Sekunde an. Die Leistung Trendlinie zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,986 ist, was eine nahezu perfekte Passung der Zeile zu den Daten ist. Diese Kurve zeigt eine gekrümmte Linie, wenn Datenwerte mit stetig steigenden Werten steigen oder fallen. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Eine exponentielle Trendlinie nutzt diese Gleichung, um die kleinsten Quadrate durch Punkte zu berechnen: wobei c und b Konstanten sind und e die Basis des natürlichen Logarithmus ist. Die folgende exponentielle Trendlinie zeigt die abnehmende Menge an Kohlenstoff 14 in einem Objekt, während es altert. Beachten Sie, dass der R-Quadrat-Wert 0.990 ist, was bedeutet, dass die Linie die Daten nahezu perfekt passt. Moving Average trendline Diese Trendlinie gleicht Schwankungen in den Daten aus, um ein Muster oder einen Trend deutlicher darzustellen. Ein gleitender Durchschnitt verwendet eine bestimmte Anzahl von Datenpunkten (die durch die Option "Periode" festgelegt wurden), sie mittelt sie und verwendet den Durchschnittswert als Punkt in der Zeile. Wenn beispielsweise Period auf 2 gesetzt ist, wird der Durchschnitt der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Durchschnitt der zweiten und dritten Datenpunkte wird als zweiter Punkt in der Trendlinie usw. verwendet. Eine gleitende durchschnittliche Trendlinie verwendet diese Gleichung: Die Anzahl der Punkte in einer gleitenden durchschnittlichen Trendlinie entspricht der Gesamtzahl der Punkte in der Reihe minus der Die Sie für den Zeitraum angeben. In einem Streudiagramm basiert die Trendlinie auf der Reihenfolge der x-Werte im Diagramm. Für ein besseres Ergebnis sortieren Sie die x-Werte, bevor Sie einen gleitenden Durchschnitt hinzufügen. Die folgende gleitende durchschnittliche Trendlinie zeigt ein Muster in der Zahl der Häuser, die über einen Zeitraum von 26 Wochen verkauft werden. Erstellung eines gewichteten gleitenden Durchschnitts in 3 Schritten Überblick über den gleitenden Durchschnitt Der gleitende Durchschnitt ist ein statistisches Verfahren zur Glättung kurzfristiger Fluktuationen in Eine Reihe von Daten, um längerfristige Trends oder Zyklen leichter erkennen zu können. Der gleitende Durchschnitt wird manchmal als ein rollender Durchschnitt oder ein laufender Durchschnitt bezeichnet. Ein gleitender Durchschnitt ist eine Reihe von Zahlen, die jeweils den Durchschnitt eines Intervalls einer bestimmten Anzahl von vorherigen Perioden darstellen. Je größer das Intervall, desto mehr Glättung erfolgt. Je kleiner das Intervall, desto mehr gleicht der gleitende Durchschnitt den tatsächlichen Datenreihen. Gleitende Mittelwerte führen die folgenden drei Funktionen aus: Glättung der Daten, was bedeutet, die Anpassung der Daten an eine Zeile zu verbessern. Verringerung der Wirkung von temporären Variation und zufälligen Rauschen. Hervorhebung von Ausreißern über oder unter dem Trend. Der gleitende Durchschnitt ist eine der am häufigsten verwendeten statistischen Techniken in der Industrie, um Daten-Trends zu identifizieren. Beispielsweise sehen Verkaufsmanager häufig dreimonatige Bewegungsdurchschnitte von Verkaufsdaten. Der Artikel wird einen zweimonatigen, dreimonatigen und sechsmonatigen einfachen gleitenden Durchschnitt der gleichen Verkaufsdaten vergleichen. Der gleitende Durchschnitt wird sehr häufig in der technischen Analyse von Finanzdaten wie Aktienrenditen und in der Volkswirtschaft verwendet, um Tendenzen in makroökonomischen Zeitreihen wie Beschäftigung zu lokalisieren. Es gibt eine Anzahl von Variationen des gleitenden Durchschnitts. Die am häufigsten verwendeten sind der einfache gleitende Durchschnitt, der gewichtete gleitende Durchschnitt und der exponentielle gleitende Durchschnitt. Die Durchführung jeder dieser Techniken in Excel wird im Detail in separaten Artikeln in diesem Blog behandelt werden. Hier ist ein kurzer Überblick über jede dieser drei Techniken. Simple Moving Average Jeder Punkt in einem einfachen gleitenden Durchschnitt ist der Durchschnitt einer bestimmten Anzahl von vorherigen Perioden. Ein Link zu einem anderen Artikel in diesem Blog, der eine detaillierte Erläuterung der Implementierung dieser Technik in Excel bereitstellt, ist wie folgt: Gewichtete Moving Average Points im gewichteten gleitenden Durchschnitt stellen ebenfalls einen Durchschnitt einer bestimmten Anzahl von vorherigen Perioden dar. Der gewichtete gleitende Durchschnitt bezieht sich auf eine unterschiedliche Gewichtung auf bestimmte vorhergehende Perioden, ganz oft werden die jüngeren Perioden größeres Gewicht gegeben. Dieser Blog-Artikel liefert eine ausführliche Erläuterung der Implementierung dieser Technik in Excel. Exponential Moving Average Punkte im exponentiellen gleitenden Durchschnitt stellen auch einen Durchschnitt einer bestimmten Anzahl von vorherigen Perioden dar. Exponentielle Glättung setzt Gewichtungsfaktoren auf frühere Perioden, die exponentiell abnehmen und niemals Null erreichen. Als Ergebnis berücksichtigt die exponentielle Glättung alle vorherigen Perioden anstelle einer bestimmten Anzahl früherer Perioden, die der gewichtete gleitende Durchschnitt aufweist. Eine Verknüpfung zu einem anderen Artikel in diesem Blog, der eine ausführliche Erläuterung der Implementierung dieser Technik in Excel bereitstellt, ist wie folgt: Im folgenden wird der dreistufige Prozess zum Erstellen eines gewichteten gleitenden Durchschnitts von Zeitreihendaten in Excel beschrieben: Schritt 1 8211 Diagramm der ursprünglichen Daten in einem Zeitreihen-Diagramm Das Liniendiagramm ist das am häufigsten verwendete Excel-Diagramm, um Zeitreihen-Daten zu grafisch darstellen. Ein Beispiel für ein solches Excel-Diagramm, das verwendet wird, um 13 Perioden von Verkaufsdaten zu plotten, wird wie folgt gezeigt: Schritt 2 8211 Erstellen Sie den gewichteten gleitenden Durchschnitt mit Formeln in Excel Excel bietet nicht das Tool "Gleitender Durchschnitt" im Datenanalyse-Menü an, damit die Formeln vorliegen müssen Manuell aufgebaut. In diesem Fall wird ein 2-Intervall-gewichteter gleitender Durchschnitt durch Anwenden eines Gewichts von 2 auf die jüngste Periode und eines Gewichts von 1 auf die vorherige Periode erzeugt. Die Formel in Zelle E5 kann bis Zelle E17 kopiert werden. Schritt 3 8211 Hinzufügen der gewichteten gleitenden Durchschnittsreihe zum Diagramm Diese Daten sollten nun dem Diagramm hinzugefügt werden, das die ursprüngliche Zeitlinie der Verkaufsdaten enthält. Die Daten werden einfach als eine weitere Datenreihe in das Diagramm aufgenommen. Um dies zu tun, klicken Sie mit der rechten Maustaste irgendwo auf dem Diagramm und ein Menü wird Pop-up. Hit Select Data, um die neue Datenreihe hinzuzufügen. Die gleitende Mittelreihe wird hinzugefügt, indem das Dialogfeld Edit-Serie wie folgt ergänzt wird: Das Diagramm, das die ursprüngliche Datenreihe enthält, und das 2-Intervall-gewichtete gleitende Mittel wird wie folgt dargestellt. Beachten Sie, dass die gleitende mittlere Linie ein wenig glatter ist und die Rohdatenwerte über und unter der Trendlinie deutlich sichtbarer sind. Auch der Gesamttrend ist deutlich sichtbarer. Ein 3-Intervall gleitender Durchschnitt kann erstellt werden und auf dem Diagramm mit fast dem gleichen Verfahren wie folgt platziert werden. Beachten Sie, dass der jüngsten Periode das Gewicht von 3 zugewiesen wird, der Zeitraum vor dem zugewiesen und das Gewicht von 2, und der Zeitraum vor, dem ein Gewicht von 1 zugewiesen wird. Diese Daten sollten nun dem Diagramm hinzugefügt werden, das das Original enthält Zeit-Linie der Verkaufsdaten zusammen mit der 2-Intervall-Serie. Die Daten werden einfach als eine weitere Datenreihe in das Diagramm aufgenommen. Um dies zu tun, klicken Sie mit der rechten Maustaste irgendwo auf dem Diagramm und ein Menü wird Pop-up. Hit Select Data, um die neue Datenreihe hinzuzufügen. Die gleitende Durchschnittsreihe wird hinzugefügt, indem das Dialogfeld Edit-Serie wie folgt ergänzt wird: Wie erwartet, tritt ein etwas mehr Glättung mit dem gewichteten 3-Intervall-gleitenden Durchschnitt auf als mit dem gewichteten 2-Intervall-gleitenden Durchschnitt. Zum Vergleich wird ein 6-Intervall gewichteter gleitender Durchschnitt berechnet und dem Diagramm auf die gleiche Weise wie folgt hinzugefügt. Man beachte, daß die zunehmend abnehmenden Gewichte, die als Perioden zugeordnet sind, in der Vergangenheit entfernter werden. Diese Daten sollten nun dem Diagramm hinzugefügt werden, das die ursprüngliche Zeitlinie der Verkaufsdaten zusammen mit der 2- und 3-Intervall-Reihe enthält. Die Daten werden einfach als eine weitere Datenreihe in das Diagramm aufgenommen. Um dies zu tun, klicken Sie mit der rechten Maustaste irgendwo auf dem Diagramm und ein Menü wird Pop-up. Hit Select Data, um die neue Datenreihe hinzuzufügen. Die gleitende Durchschnittsreihe wird hinzugefügt, indem das Dialogfeld Edit-Serie wie folgt ergänzt wird: Wie erwartet, ist der 6-Intervall-gewichtete gleitende Durchschnitt signifikant glatter als die gewichteten 2 oder 3-gewichteten gleitenden Mittelwerte. Ein glatterer Graph paßt genau auf eine gerade Linie. Analysieren der Prognosegenauigkeit Die beiden Komponenten der Prognosegenauigkeit sind die folgenden: Prognosevorhersage 8211 Die Tendenz einer Prognose, konstant höher oder niedriger als tatsächliche Werte einer Zeitreihe zu sein. Die Prognosevorspannung ist die Summe aller Fehler, geteilt durch die Anzahl der Perioden, wie folgt: Eine positive Bias gibt eine Tendenz zur Unterprognose an. Eine negative Vorspannung gibt eine Tendenz zur Überprognose an. Bias misst nicht die Genauigkeit, da positiver und negativer Fehler sich gegenseitig aufheben. Prognosefehler 8211 Die Differenz zwischen Istwerten einer Zeitreihe und den prognostizierten Werten der Prognose. Die gebräuchlichsten Maßnahmen des Prognosefehlers sind die folgenden: MAD 8211 Mean Absolute Deviation MAD berechnet den durchschnittlichen Absolutwert des Fehlers und wird mit folgender Formel berechnet: Die Mittelung der Absolutwerte der Fehler eliminiert den Abbruch von positiven und negativen Fehlern. Je kleiner der MAD, desto besser ist das Modell. MSE 8211 Mean Squared Error MSE ist ein beliebtes Maß für den Fehler, der die Abbruchwirkung von positiven und negativen Fehlern beseitigt, indem die Quadrate des Fehlers mit folgender Formel summiert werden: Große Fehlerterme tendieren dazu, MSE zu übertreiben, da die Fehlerterme alle quadriert sind. RMSE (Root Square Mean) reduziert dieses Problem, indem es die Quadratwurzel von MSE nimmt. MAPE 8211 Mittlerer absoluter Prozentfehler MAPE eliminiert auch den Abbrechen von positiven und negativen Fehlern durch Summieren der Absolutwerte der Fehlerterme. MAPE berechnet die Summe der prozentualen Fehlerterme mit folgender Formel: Durch Summieren von prozentualen Fehlertermen kann MAPE verwendet werden, um Prognosemodelle, die unterschiedliche Maßstäbe verwenden, zu vergleichen. Berechnung von Bias, MAD, MSE, RMSE und MAPE in Excel Für die gewichtete Moving Average Bias werden MAD, MSE, RMSE und MAPE in Excel berechnet, um die gewichteten 2-Intervall-, 3-Intervall - und 6-Intervalle zu bewerten Durchschnittliche Prognose in diesem Artikel erhalten und wie folgt dargestellt: Der erste Schritt ist die Berechnung von E t. E t, E t / Y t-act. Und dann die Summe dann wie folgt berechnet werden: Bias, MAD, MSE, MAPE und RMSE können wie folgt berechnet werden: Es werden nun dieselben Berechnungen durchgeführt, um Bias, MAD, MSE, MAPE und RMSE für den 3-Intervall-gewichteten gleitenden Durchschnitt zu berechnen. Bias, MAD, MSE, MAPE und RMSE können wie folgt berechnet werden: Es werden die gleichen Berechnungen durchgeführt, um Bias, MAD, MSE, MAPE und RMSE für den 6-Intervall-gewichteten gleitenden Durchschnitt zu berechnen. Bias, MAD, MSE, MAPE und RMSE können wie folgt berechnet werden: Bias, MAD, MSE, MAPE und RMSE werden für die 2-Intervall-, 3-Intervall - und 6-Intervall-gewichteten Bewegungsdurchschnitte wie folgt zusammengefasst. Der 2-Intervall-gewichtete gleitende Durchschnitt ist das Modell, das am ehesten an die tatsächlichen Daten passt, wie es erwartet wird. 160 Excel Master Series Blog Verzeichnis Statistische Themen und Artikel in jedem Thema
No comments:
Post a Comment